Stock Price Forecasting with Deep Learning Techniques

Author:

SARACIK Özgür1ORCID,İNCEKIRIK Aynur2ORCID

Affiliation:

1. Università degli Studi di Torino

2. MANİSA CELAL BAYAR ÜNİVERSİTESİ İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ

Abstract

In this study, LSTM (Long-Short Term Memory) and GRU (Gated Recurrent Unit) techniques of deep learning, which are among the latest advanced technologies, were applied in the Google Colab software program for stock price forecasting. The dataset used in the study was obtained from Yahoo Finance and covers the dates between 02/01/2013 and 30/12/2022. Forecast models were created by considering 5 companies belonging to the XELKT (Electricity Market in Borsa Istanbul) index, which is part of BIST (Borsa Istanbul). Subsequently, the success of these forecast models was tested with the calculated model performance criteria, aiming to determine whether the techniques used were successful in stock price forecasting. Additionally, based on the results of MSE (Mean Squared Error) and MAPE (Mean Absolute Percentage Error) among the calculated model performance criteria, the techniques used were compared with each other, aiming to determine which of these techniques provided forecasts with less error. Then, through the analysis conducted on four different days, an attempt was made to identify the day that yielded the most successful forecasts. As a final step, the goal was to find a model with the least error based on techniques, epoch number, and the number of days forecasted, considering both MSE and MAPE for stocks. Since the model performance criteria outputs obtained from these analyses are below 1 for MSE and below 5% for MAPE, it can be concluded that both techniques demonstrate successful stock price forecasting. Consequently, in the comparison between these two techniques, it is observed that the LSTM technique is slightly more successful than the GRU technique.

Publisher

Alphanumeric Journal

Subject

Applied Mathematics,General Mathematics

Reference53 articles.

1. Adaş, E. B., & Erbay, B. (2022). An Evaluation on the Sociology of AI. Gaziantep University Journal of Social Sciences, 326 - 337.

2. Aktürk, C., & Talan, T. (2022). Bilgisayar Bilimlerinde Teorik ve Uygulamalı Araştırmalar. Efe Akademi.

3. Amidi, A., & Amidi, S. (2018). VIP Cheatsheet: Recurrent Neural Networks. https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks (Accessed: 03/01/2023)

4. Arslan, K. (2020). AI and Applications in Education. Western Anatolia Journal of Educational Sciences, 71 - 88.

5. Asher, C. (2021). The Role of AI in Characterizing the DCM phenotype. Frontiers in Cardiovascular Medicine, 1-20.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3