Anomaly Detection and Classification in Water Distribution Networks Integrated with Hourly Nodal Water Demand Forecasting Models and Feature Extraction Technique
Author:
Affiliation:
1. Ph.D. Student, School of Environment, Harbin Institute of Technology, Harbin 150090, China (corresponding author). ORCID: .
2. Professor, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
Publisher
American Society of Civil Engineers (ASCE)
Subject
Management, Monitoring, Policy and Law,Water Science and Technology,Geography, Planning and Development,Civil and Structural Engineering
Link
https://ascelibrary.org/doi/pdf/10.1061/%28ASCE%29WR.1943-5452.0001616
Reference49 articles.
1. A pressure-based method for monitoring leaks in a pipe distribution system: A Review
2. Urban Residential Water Demand Prediction Based on Artificial Neural Networks and Time Series Models
3. A Leak Zone Location Approach in Water Distribution Networks Combining Data-Driven and Model-Based Methods
4. Chen T. and C. Guestrin. 2016. “XGBoost: A scalable tree boosting system.” In Proc. 22nd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining 785–794. New York: Association for Computing Machinery. https://doi.org/10.1145/2939672.2939785.
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Water Supply Pipeline Operation Anomaly Mining and Spatiotemporal Correlation Study;Journal of Pipeline Systems Engineering and Practice;2024-11
2. Enhancing accuracy and interpretability of multi-steps water demand prediction through prior knowledge integration in neural network architecture;Water Research X;2024-09
3. Burst Diagnosis Multi-Stage Model for Water Distribution Networks Based on Deep Learning Algorithms;Water;2024-04-28
4. A Robust Leakage Detection Method for Water Distribution Network Based on Spatiotemporal Data and Machine Learning;2024
5. On‐Line Warning System for Pipe Burst Using Bayesian Dynamic Linear Models;Water Resources Research;2023-04
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3