Tracking Brand-Associated Polarity-Bearing Topics in User Reviews

Author:

Zhao Runcong12,Gui Lin1,Yan Hanqi3,He Yulan435

Affiliation:

1. King’s College London, United Kingdom

2. University of Warwick, United Kingdom. runcong.zhao@warwick.ac.uk

3. University of Warwick, United Kingdom

4. King’s College London, United Kingdom. yulan.he@kcl.ac.uk

5. The Alan Turing Institute, United Kingdom

Abstract

Abstract Monitoring online customer reviews is important for business organizations to measure customer satisfaction and better manage their reputations. In this paper, we propose a novel dynamic Brand-Topic Model (dBTM) which is able to automatically detect and track brand-associated sentiment scores and polarity-bearing topics from product reviews organized in temporally ordered time intervals. dBTM models the evolution of the latent brand polarity scores and the topic-word distributions over time by Gaussian state space models. It also incorporates a meta learning strategy to control the update of the topic-word distribution in each time interval in order to ensure smooth topic transitions and better brand score predictions. It has been evaluated on a dataset constructed from MakeupAlley reviews and a hotel review dataset. Experimental results show that dBTM outperforms a number of competitive baselines in brand ranking, achieving a good balance of topic coherence and uniqueness, and extracting well-separated polarity-bearing topics across time intervals.1

Publisher

MIT Press

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication

Reference39 articles.

1. Hotelrec: A novel very large-scale hotel recommendation dataset;Antognini,2020

2. Dynamic topic models;Blei,2006

3. Latent dirichlet allocation;Blei;Journal of Machine Learning Research,2003

4. Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification;Blitzer,2007

5. An unsupervised aspect-sentiment model for online reviews;Brody,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3