xcomet : Transparent Machine Translation Evaluation through Fine-grained Error Detection

Author:

Guerreiro Nuno M.1234,Rei Ricardo564,Stigt Daan van7,Coheur Luisa64,Colombo Pierre3,Martins André F. T.724

Affiliation:

1. Unbabel Lisbon Portugal. nuno.guerreiro@unbabel.com

2. Instituto de Telecomunicações, Lisbon, Portugal

3. MICS, CentraleSupélec, Université Paris-Saclay, France

4. Instituto Superior Técnico, University of Lisbon, Portugal

5. Unbabel Lisbon Portugal. ricardo.rei@unbabel.com

6. INESC-ID, Lisbon, Portugal

7. Unbabel Lisbon Portugal

Abstract

Abstract Widely used learned metrics for machine translation evaluation, such as Comet and Bleurt, estimate the quality of a translation hypothesis by providing a single sentence-level score. As such, they offer little insight into translation errors (e.g., what are the errors and what is their severity). On the other hand, generative large language models (LLMs) are amplifying the adoption of more granular strategies to evaluation, attempting to detail and categorize translation errors. In this work, we introduce xcomet, an open-source learned metric designed to bridge the gap between these approaches. xcomet integrates both sentence-level evaluation and error span detection capabilities, exhibiting state-of-the-art performance across all types of evaluation (sentence-level, system-level, and error span detection). Moreover, it does so while highlighting and categorizing error spans, thus enriching the quality assessment. We also provide a robustness analysis with stress tests, and show that xcomet is largely capable of identifying localized critical errors and hallucinations.

Publisher

MIT Press

Reference50 articles.

1. Robust MT evaluation with sentence-level multilingual augmentation;Alves,2022

2. Identifying weaknesses in machine translation metrics through minimum Bayes risk decoding: A case study for COMET;Amrhein,2022

3. Towards fine-grained information: Identifying the type and location of translation errors;Bao,2023

4. Findings of the 2017 conference on machine translation (WMT17);Bojar,2017

5. A statistical analysis of summarization evaluation metrics using resampling methods;Deutsch;Transactions of the Association for Computational Linguistics,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3