Speak, Read and Prompt: High-Fidelity Text-to-Speech with Minimal Supervision

Author:

Kharitonov Eugene1,Vincent Damien2,Borsos Zalán3,Marinier Raphaël4,Girgin Sertan4,Pietquin Olivier4,Sharifi Matt3,Tagliasacchi Marco3,Zeghidour Neil5

Affiliation:

1. Google, France kharitonov@google.com

2. Google, Switzerland. damienv@google.com

3. Google, Switzerland

4. Google, France

5. Google, France neilz@google.com

Abstract

Abstract We introduce SPEAR-TTS, a multi-speaker text-to-speech (TTS) system that can be trained with minimal supervision. By combining two types of discrete speech representations, we cast TTS as a composition of two sequence-to-sequence tasks: from text to high-level semantic tokens (akin to “reading”) and from semantic tokens to low-level acoustic tokens (“speaking”). Decoupling these two tasks enables training of the “speaking” module using abundant audio-only data, and unlocks the highly efficient combination of pretraining and backtranslation to reduce the need for parallel data when training the “reading” component. To control the speaker identity, we adopt example prompting, which allows SPEAR-TTS to generalize to unseen speakers using only a short sample of 3 seconds, without any explicit speaker representation or speaker labels. Our experiments demonstrate that SPEAR-TTS achieves a character error rate that is competitive with state-of-the-art methods using only 15 minutes of parallel data, while matching ground-truth speech in naturalness and acoustic quality.

Publisher

MIT Press

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication

Reference42 articles.

1. MusicLM: Generating music from text;Agostinelli;arXiv preprint arXiv:2301.11325,2023

2. SpeechT5: Unified-modal encoder-decoder pre-training for spoken language processing;Ao,2022

3. TorToiSe text-to-speech;Betker,2022

4. AudioLM: A language modeling approach to audio generation;Borsos;IEEE/ACM Transactions on Audio, Speech, and Language Processing,2023

5. Language models are few-shot learners;Brown;NeurIPS,2020

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Video and Audio Deepfake Datasets and Open Issues in Deepfake Technology: Being Ahead of the Curve;Forensic Sciences;2024-07-13

2. Applying Phonological Feature Embeddings for Cross-Lingual Transfer in Text-to-Speech;2024 47th International Conference on Telecommunications and Signal Processing (TSP);2024-07-10

3. tinyDigiClones: A Multi-Modal LLM-Based Framework for Edge-optimized Personalized Avatars;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

4. EM-TTS: Efficiently Trained Low-Resource Mongolian Lightweight Text-to-Speech;2024 27th International Conference on Computer Supported Cooperative Work in Design (CSCWD);2024-05-08

5. High-Fidelity Speech Synthesis with Minimal Supervision: All Using Diffusion Models;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3