Grounding Action Descriptions in Videos

Author:

Regneri Michaela1,Rohrbach Marcus2,Wetzel Dominikus1,Thater Stefan1,Schiele Bernt2,Pinkal Manfred1

Affiliation:

1. Department of Computational Linguistics, Saarland University, Saarbrücken, Germany,

2. Max Planck Institute for Informatics, Saarbrücken, Germany,

Abstract

Recent work has shown that the integration of visual information into text-based models can substantially improve model predictions, but so far only visual information extracted from static images has been used. In this paper, we consider the problem of grounding sentences describing actions in visual information extracted from videos. We present a general purpose corpus that aligns high quality videos with multiple natural language descriptions of the actions portrayed in the videos, together with an annotation of how similar the action descriptions are to each other. Experimental results demonstrate that a text-based model of similarity between actions improves substantially when combined with visual information from videos depicting the described actions.

Publisher

MIT Press - Journals

Cited by 138 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Action-guided prompt tuning for video grounding;Information Fusion;2025-01

2. Learning Commonsense-aware Moment-Text Alignment for Fast Video Temporal Grounding;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-09-12

3. Routing Evidence for Unseen Actions in Video Moment Retrieval;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

4. Enhancing Video Grounding with Dual-Path Modality Fusion on Animal Kingdom Datasets;2024 IEEE International Conference on Multimedia and Expo Workshops (ICMEW);2024-07-15

5. Effective and Efficient: Deeper and Faster Fusion Network for Multimodal Summarization;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3