Transparency Helps Reveal When Language Models Learn Meaning

Author:

Wu Zhaofeng1,Merrill William2,Peng Hao3,Beltagy Iz4,Smith Noah A.56

Affiliation:

1. MIT. zfw@csail.mit.edu

2. New York University. willm@nyu.edu

3. Allen Institute for Artificial Intelligence. haop@allenai.org

4. Allen Institute for Artificial Intelligence. beltagy@allenai.org

5. Allen Institute for Artificial Intelligence. noah@allenai.org

6. Paul G. Allen School of Computer Science & Engineering, University of Washington. noah@allenai.org

Abstract

AbstractMany current NLP systems are built from language models trained to optimize unsupervised objectives on large amounts of raw text. Under what conditions might such a procedure acquire meaning? Our systematic experiments with synthetic data reveal that, with languages where all expressions have context-independent denotations (i.e., languages with strong transparency), both autoregressive and masked language models successfully learn to emulate semantic relations between expressions. However, when denotations are changed to be context-dependent with the language otherwise unmodified, this ability degrades. Turning to natural language, our experiments with a specific phenomenon—referential opacity—add to the growing body of evidence that current language models do not represent natural language semantics well. We show this failure relates to the context-dependent nature of natural language form-meaning mappings.

Publisher

MIT Press

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication

Reference68 articles.

1. Understanding intermediate layers using linear classifier probes;Alain,2017

2. Measuring compositionality in representation learning;Andreas,2019

3. Climbing towards NLU: On meaning, form, and understanding in the age of data;Bender,2020

4. A large annotated corpus for learning natural language inference;Bowman,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3