TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages

Author:

Clark Jonathan H.1,Choi Eunsol1,Collins Michael1,Garrette Dan1,Kwiatkowski Tom1,Nikolaev Vitaly1,Palomaki Jennimaria1

Affiliation:

1. Google Research

Abstract

Confidently making progress on multilingual modeling requires challenging, trustworthy evaluations. We present TyDi QA—a question answering dataset covering 11 typologically diverse languages with 204K question-answer pairs. The languages of TyDi QA are diverse with regard to their typology—the set of linguistic features each language expresses—such that we expect models performing well on this set to generalize across a large number of the world’s languages. We present a quantitative analysis of the data quality and example-level qualitative linguistic analyses of observed language phenomena that would not be found in English-only corpora. To provide a realistic information-seeking task and avoid priming effects, questions are written by people who want to know the answer, but don’t know the answer yet, and the data is collected directly in each language without the use of translation.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Human-Computer Interaction,Communication

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Building a benchmark dataset for the Kurdish news question answering;Data in Brief;2024-12

2. Are LLMs good at structured outputs? A benchmark for evaluating structured output capabilities in LLMs;Information Processing & Management;2024-09

3. AraQA-BERT: Towards an Arabic Question Answering System using Pre-trained BERT Models;WSEAS TRANSACTIONS ON INFORMATION SCIENCE AND APPLICATIONS;2024-08-08

4. HistoryQuest: Arabic Question Answering in Egyptian History with LLM Fine-Tuning and Transformer Models;2024 Intelligent Methods, Systems, and Applications (IMSA);2024-07-13

5. Negative Sampling Techniques for Dense Passage Retrieval in a Multilingual Setting;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3