Joint Semantic Synthesis and Morphological Analysis of the Derived Word

Author:

Cotterell Ryan1,Schütze Hinrich2

Affiliation:

1. Department of Computer Science, Johns Hopkins University,

2. CIS, LMU Munich,

Abstract

Much like sentences are composed of words, words themselves are composed of smaller units. For example, the English word questionably can be analyzed as question+ able+ ly. However, this structural decomposition of the word does not directly give us a semantic representation of the word’s meaning. Since morphology obeys the principle of compositionality, the semantics of the word can be systematically derived from the meaning of its parts. In this work, we propose a novel probabilistic model of word formation that captures both the analysis of a word w into its constituent segments and the synthesis of the meaning of w from the meanings of those segments. Our model jointly learns to segment words into morphemes and compose distributional semantic vectors of those morphemes. We experiment with the model on English CELEX data and German DErivBase (Zeller et al., 2013) data. We show that jointly modeling semantics increases both segmentation accuracy and morpheme F1 by between 3% and 5%. Additionally, we investigate different models of vector composition, showing that recurrent neural networks yield an improvement over simple additive models. Finally, we study the degree to which the representations correspond to a linguist’s notion of morphological productivity.

Publisher

MIT Press - Journals

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Distributional semantic approaches for derivational morphology;Corpus;2022-03-02

2. A Review of Morphological Analysis Methods on Uyghur Language;2021 International Conference on Asian Language Processing (IALP);2021-12-11

3. Grounding semantic transparency in context;Morphology;2021-07-08

4. Distributional Semantics and Linguistic Theory;Annual Review of Linguistics;2020-01-14

5. How the brain composes morphemes into meaning;Philosophical Transactions of the Royal Society B: Biological Sciences;2019-12-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3