Comparison of Three Motion Cueing Algorithms for Curve Driving in an Urban Environment

Author:

Valente Pais A. R1,Wentink M2,van Paassen M. M,Mulder M1

Affiliation:

1. Control and Simulation Division, Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands

2. TNO Defence, Security and Safety, Soesterberg, The Netherlands

Abstract

Research on new automotive systems currently relies on car driving simulators, as they are a cheaper, faster, and safer alternative to tests on real tracks. However, there is increasing concern about the motion cues provided in the simulator and their influence on the validity of these studies. Especially for curve driving, providing large sustained acceleration is difficult in the limited motion space of simulators. Recently built simulators, such as Desdemona, offer a large motion space showing great potential as automotive simulators. The goal of this research is: first, to develop a motion drive algorithm for urban curve driving in the Desdemona simulator; and second, to evaluate the solution through a simulator driving experiment. The developed algorithm, the one-to-one yaw algorithm, is compared to a classical washout algorithm (adapted to the Desdemona motion space) and a control condition where only road rumble is provided. Results show that regarding lateral motion, the absence of cues in the rumble condition is preferred over the presence of false cues in the classical algorithm. “No motion” seems to be favored over “bad motion.” In terms of longitudinal motion, the one-to-one yaw and the classical algorithm are voted better than the rumble condition, showing that the addition of motion cues is beneficial to the simulation of braking. In a general way, the one-to-one yaw algorithm is classified better than the other two algorithms.

Publisher

MIT Press - Journals

Subject

Computer Vision and Pattern Recognition,Human-Computer Interaction,Control and Systems Engineering,Software

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3