Using Radial Outflow to Provide Depth Information During Teleoperation

Author:

Gomer Joshua A,Dash Coleman H,Moore Kristin S,Pagano Christopher C1

Affiliation:

1. Department of Psychology, Clemson University, Clemson, SC 29634-1355

Abstract

Practical experience has shown that teleoperators have difficulty perceiving aspects of remotely operated robots and their environments (e.g., Casper & Murphy, 2003; Smets, 1995; Tittle, Roesler, & Woods, 2002). Previous research has shown that head motions can provide effective information about depth (Bingham, & Pagano, 1998; Pagano & Bingham, 1998). In three experiments, a method for improving depth perception was investigated, where participants viewed remote targets with a moving camera. The camera was mounted on a teleoperated robotic arm that oscillated toward and away from white squares against black space, producing expansion and contraction of targets on a video monitor. Participants viewed this expansion and contraction and then reported the distance between the remote camera and the targets. Under different experimental conditions, motions of the remote camera arm were coupled with the participants' head movements, were controlled by a joystick, or followed a set of preprogrammed oscillatory motions. Under each of these conditions, participants' distance judgments varied semantically with actual target distances. In addition, the third experiment demonstrated that using familiar objects and providing feedback could be a successful method of training. This was also the case when applied to a condition where distance feedback was not provided and unfamiliar targets were used. The results indicate that the use of radial outflow produced by active or passive front-to-back camera motions and training with familiar objects may be effective strategies for improving depth perception in teleoperation.

Publisher

MIT Press - Journals

Subject

Computer Vision and Pattern Recognition,Human-Computer Interaction,Control and Systems Engineering,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3