Affiliation:
1. Institute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences, Baku AZ1141, Azerbaijan
Abstract
The possibility of approximating a continuous function on a compact subset of the real line by a feedforward single hidden layer neural network with a sigmoidal activation function has been studied in many papers. Such networks can approximate an arbitrary continuous function provided that an unlimited number of neurons in a hidden layer is permitted. In this note, we consider constructive approximation on any finite interval of [Formula: see text] by neural networks with only one neuron in the hidden layer. We construct algorithmically a smooth, sigmoidal, almost monotone activation function [Formula: see text] providing approximation to an arbitrary continuous function within any degree of accuracy. This algorithm is implemented in a computer program, which computes the value of [Formula: see text] at any reasonable point of the real axis.
Subject
Cognitive Neuroscience,Arts and Humanities (miscellaneous)
Cited by
70 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献