Linear Methods for Efficient and Fast Separation of Two Sources Recorded with a Single Microphone

Author:

Bhargava Saurabh1,Blättler Florian1,Kollmorgen Sepp1,Liu Shih-Chii1,Hahnloser Richard H. R.1

Affiliation:

1. Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, 8057, Switzerland

Abstract

This letter addresses the problem of separating two speakers from a single microphone recording. Three linear methods are tested for source separation, all of which operate directly on sound spectrograms: (1) eigenmode analysis of covariance difference to identify spectro-temporal features associated with large variance for one source and small variance for the other source; (2) maximum likelihood demixing in which the mixture is modeled as the sum of two gaussian signals and maximum likelihood is used to identify the most likely sources; and (3) suppression-regression, in which autoregressive models are trained to reproduce one source and suppress the other. These linear approaches are tested on the problem of separating a known male from a known female speaker. The performance of these algorithms is assessed in terms of the residual error of estimated source spectrograms, waveform signal-to-noise ratio, and perceptual evaluation of speech quality scores. This work shows that the algorithms compare favorably to nonlinear approaches such as nonnegative sparse coding in terms of simplicity, performance, and suitability for real-time implementations, and they provide benchmark solutions for monaural source separation tasks.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sparse NMF based speech enhancement with bases update;International Journal of Speech Technology;2017-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3