Identifying Features of Fitness Landscapes and Relating Them to Problem Difficulty

Author:

Moser I.1,Gheorghita M.1,Aleti A.2

Affiliation:

1. Department of Computer Science and Software Engineering, Swinburne University of Technology, Melbourne, Victoria, Australia

2. Faculty of Information Technology, Monash University, Melbourne, Victoria, Australia

Abstract

Complex combinatorial problems are most often optimised with heuristic solvers, which usually deliver acceptable results without any indication of the quality obtained. Recently, predictive diagnostic optimisation was proposed as a means of characterising the fitness landscape while optimising a combinatorial problem. The scalars produced by predictive diagnostic optimisation appear to describe the difficulty of the problem with relative reliability. In this study, we record more scalars that may be helpful in determining problem difficulty during the optimisation process and analyse these in combination with other well-known landscape descriptors by using exploratory factor analysis on four landscapes that arise from different search operators, applied to a varied set of quadratic assignment problem instances. Factors are designed to capture properties by combining the collinear variances of several variables. The extracted factors can be interpreted as the features of landscapes detected by the variables, but disappoint in their weak correlations with the result quality achieved by the optimiser, which we regard as the most reliable indicator of difficulty available. It appears that only the prediction error of predictive diagnostic optimisation has a strong correlation with the quality of the results produced, followed by a medium correlation of the fitness distance correlation of the local optima.

Publisher

MIT Press - Journals

Subject

Computational Mathematics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3