Measurement, Analysis, and Display of Haptic Signals During Surgical Cutting

Author:

Greenish Stephanie1,Hayward Vincent2,Chial Vanessa3,Okamura Allison3,Steffen Thomas4

Affiliation:

1. Center for Intelligent Machines, McGill University, 3480 University Street, Montréal, Qc, Canada H3A 2A7

2. Center for Intelligent Machines, McGill University, 3480 University Street, Montréal, Qc, Canada H3A 2A7,

3. Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD

4. Orthopaedic Research Laboratory, Royal Victoria Hospital, Montréal, Québec, Canada

Abstract

The forces experienced while surgically cutting anatomical tissues from a sheep and two rats were investigated for three scissor types. Data were collected in situ using instrumented Mayo, Metzenbaum, and Iris scissors immediately after death to minimize postmortem effects. The force-position relationship, the frequency components present in the signal, the significance of the cutting rate, and other invariant properties were investigated after segmentation of the data into distinct task phases. Measurements were found to be independent of the cutting speed for Mayo and Metzenbaum scissors, but the results for Iris scissors were inconclusive. Sensitivity to cutting tissues longitudinally or transversely depended on both the tissue and on the scissor type. Data from cutting three tissues (rat skin, liver, and tendon) with Metzenbaum scissors as well as blank runs were processed and displayed as haptic recordings through a custom-designed haptic interface. Experiments demonstrated that human subjects could identify tissues with similar accuracy when performing a real or simulated cutting task. The use of haptic recordings to generate the simulations was simple and efficient, but it lacked flexibility because only the information obtained during data acquisition could be displayed. Future experiments should account for the user grip, tissue thickness, tissue moisture content, hand orientation, and innate scissor dynamics. A database of the collected signals has been created on the Internet for public use at www.cim.mcgill.ca/∼haptic/tissue/data.html .

Publisher

MIT Press - Journals

Subject

Computer Vision and Pattern Recognition,Human-Computer Interaction,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3