A Cerebellar Model of Timing and Prediction in the Control of Reaching

Author:

Barto Andrew G.1,Fagg Andrew H.1,Sitkoff Nathan1,Houk James C.2

Affiliation:

1. Department of Computer Science, University of Massachusetts, Amherst, MA 01003, U.S.A.

2. Department of Physiology, Northwestern University Medical School, Chicago, IL 60611, U.S.A.

Abstract

A simplified model of the cerebellum was developed to explore its potential for adaptive, predictive control based on delayed feedback information. An abstract representation of a single Purkinje cell with multistable properties was interfaced, using a formalized premotor network, with a simulated single degree-of-freedom limb. The limb actuator was a nonlinear spring-mass system based on the nonlinear velocity dependence of the stretch reflex. By including realistic mossy fiber signals, as well as realistic conduction delays in afferent and efferent pathways, the model allowed the investigation of timing and predictive processes relevant to cerebellar involvement in the control of movement. The model regulates movement by learning to react in an anticipatory fashion to sensory feedback. Learning depends on training information generated from corrective movements and uses a temporally asymmetric form of plasticity for the parallel fiber synapses on Purkinje cells.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3