NaviCam:A Magnifying Glass Approach to Augmented Reality

Author:

Rekimoto Jun1

Affiliation:

1. Sony Computer Science Laboratory Inc., 3-14-13 Higashigotanda, Shinagawa-ku Tokyo 141, Japan. ,

Abstract

Current augmented reality (AR) systems are not designed to be used in our daily lives. Head-mounted see-through displays are too cumbersome and look too unusual for everyday life. The limited scalability of position-tracking devices limits the use of AR to very restricted environments. This paper proposes a different way to realize AR that can be used in an open environment by introducing the concept of ID awareness and a hand-held video see-through display. Unlike other AR systems that use head-mounted or head-up displays, our approach employs the combination of a palmtop-sized display and a small video camera. A user sees the real world through the display device, with added computer-augmented information. We call this configuration the magnifying glass approach. It has several advantages over traditional head-up or head-mounted configurations. The main advantage is that the user is not required to wear any cumbersome headgear. The user can easily move the display device around like a magnifying glass and compare real and augmented images. The video camera also obtains information related to real-world situations. The system recognizes real-world objects using the video images by reading identification (ID) tags. Based on the recognized ID tag, the system retrieves and displays information about the real-world object to the user. The prototype hand-held device based on our proposed concept is called NaviCam. We describe several potential applications. Our experiments with NaviCam show the great potential of our video see-through palmtop display. It was significantly faster than a head-up configuration, and its subjective score from testers was also higher.

Publisher

MIT Press - Journals

Subject

Computer Vision and Pattern Recognition,Human-Computer Interaction,Control and Systems Engineering,Software

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RealityReplay;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2023-09-27

2. 4 Convergence of AR/VR with IoT in manufacturing and their novel usage in IoT;Augmented and Virtual Reality in Industry 5.0;2023-06-05

3. SecretSign: A Method of Finding a Specific Vehicle Privately and Quickly Using Flashing Lights;IEEE Intelligent Transportation Systems Magazine;2022-01

4. ARtention: A design space for gaze-adaptive user interfaces in augmented reality;Computers & Graphics;2021-04

5. Altering the Speed of Reality?;Proceedings of the Augmented Humans International Conference;2020-03-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3