Trade-Offs Between Energy and Depth of Neural Networks

Author:

Uchizawa Kei1,Abe Haruki2

Affiliation:

1. Graduate School of Science and Engineering, Yamagata University, Yonezawa-shi Yamagata, 992-8510 Japan uchizawa@yz.yamagata-u.ac.jp

2. Graduate School of Science and Engineering, Yamagata University, Yonezawa-shi Yamagata, 992-8510 Japan tkc50422@st.yamagata-u.ac.jp

Abstract

Abstract We present an investigation on threshold circuits and other discretized neural networks in terms of the following four computational resources—size (the number of gates), depth (the number of layers), weight (weight resolution), and energy—where the energy is a complexity measure inspired by sparse coding and is defined as the maximum number of gates outputting nonzero values, taken over all the input assignments. As our main result, we prove that if a threshold circuit C of size s, depth d, energy e, and weight w computes a Boolean function f (i.e., a classification task) of n variables, it holds that log( rk (f))≤ed(logs+logw+logn) regardless of the algorithm employed by C to compute f, where rk (f) is a parameter solely determined by a scale of f and defined as the maximum rank of a communication matrix with regard to f taken over all the possible partitions of the n input variables. For example, given a Boolean function CD n(ξ) =⋁i=1n/2ξi∧ξn/2+i, we can prove that n/2≤ed( log s+logw+logn) holds for any circuit C computing CD n. While its left-hand side is linear in n, its right-hand side is bounded by the product of the logarithmic factors of s,w,n and the linear factors of d,e. If we view the logarithmic terms as having a negligible impact on the bound, our result implies a trade-off between depth and energy: n/2 needs to be smaller than the product of e and d. For other neural network models, such as discretized ReLU circuits and discretized sigmoid circuits, we also prove that a similar trade-off holds. Thus, our results indicate that increasing depth linearly enhances the capability of neural networks to acquire sparse representations when there are hardware constraints on the number of neurons and weight resolution.

Publisher

MIT Press

Reference53 articles.

1. On the size of depth-two threshold circuits for the inner product mod 2 function;Amano,2020

2. On the complexity of depth-2 circuits with threshold gates;Amano,2005

3. An energy budget for signaling in the grey matter of the brain;Attwell;Journal of Cerebral Blood Flow and Metabolism,2001

4. Experimental evidence for sparse firing in the neocortex;Barth;Trends in Neurosciences,2012

5. Average-case lower bounds and satisfiability algorithms for small threshold circuits;Chen;Theory of Computing,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3