Shared and Specific Independent Components Analysis for Between-Group Comparison

Author:

Vahdat Shahabeddin1,Maneshi Mona2,Grova Christophe2,Gotman Jean3,Milner Theodore E.1

Affiliation:

1. Department of Kinesiology and PE, McGill University, Montreal, QC H2W 1S4, Canada

2. Biomedical Engineering Department, McGill University, Montreal, QC H2W 1S4, Canada, and Montreal Neurological Institute and Hospital, Montreal, QC H3A 2B4, Canada

3. Montreal Neurological Institute and Hospital, Montreal, QC H3A 2B4, Canada

Abstract

Independent component analysis (ICA) has been extensively used in individual and within-group data sets in real-world applications, but how can it be employed in a between-groups or conditions design? Here, we propose a new method to embed group membership information into the FastICA algorithm so as to extract components that are either shared between groups or specific to one or a subset of groups. The proposed algorithm is designed to automatically extract the pattern of differences between different experimental groups or conditions. A new constraint is added to the FastICA algorithm to simultaneously deal with the data of multiple groups in a single ICA run. This cost function restricts the specific components of one group to be orthogonal to the subspace spanned by the data of the other groups. As a result of performing a single ICA on the aggregate data of several experimental groups, the entire variability of data sets is used to extract the shared components. The results of simulations show that the proposed algorithm performs better than the regular method in both the reconstruction of the source signals and classification of shared and specific components. Also, the sensitivity to detect variations in the amplitude of shared components across groups is enhanced. A rigorous proof of convergence is provided for the proposed iterative algorithm. Thus, this algorithm is guaranteed to extract and classify shared and specific independent components across different experimental groups and conditions in a systematic way.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3