A Cerebellar Computational Mechanism for Delay Conditioning at Precise Time Intervals

Author:

Sanger Terence D.1,Kawato Mitsuo2

Affiliation:

1. Departments of Biomedical Engineering, Neurology, and Biokinesiology, University of Southern California, Los Angeles, CA 90089, U.S.A.

2. Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International, Kyoto 619-0288, Japan, and Center for Advanced Intelligence Project, RIKEN, Chuo-ku, Tokyo, 103-0027, Japan

Abstract

The cerebellum is known to have an important role in sensing and execution of precise time intervals, but the mechanism by which arbitrary time intervals can be recognized and replicated with high precision is unknown. We propose a computational model in which precise time intervals can be identified from the pattern of individual spike activity in a population of parallel fibers in the cerebellar cortex. The model depends on the presence of repeatable sequences of spikes in response to conditioned stimulus input. We emulate granule cells using a population of Izhikevich neuron approximations driven by random but repeatable mossy fiber input. We emulate long-term depression (LTD) and long-term potentiation (LTP) synaptic plasticity at the parallel fiber to Purkinje cell synapse. We simulate a delay conditioning paradigm with a conditioned stimulus (CS) presented to the mossy fibers and an unconditioned stimulus (US) some time later issued to the Purkinje cells as a teaching signal. We show that Purkinje cells rapidly adapt to decrease firing probability following onset of the CS only at the interval for which the US had occurred. We suggest that detection of replicable spike patterns provides an accurate and easily learned timing structure that could be an important mechanism for behaviors that require identification and production of precise time intervals.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3