Toward a Unified Framework for Cognitive Maps

Author:

Kim Woori1,Yoo Yongseok2

Affiliation:

1. Department of Special Education, Chonnam National University, Buk-gu, Gwangju, 61186, Korea

2. Department of Electronics Engineering, Incheon National University, Yeonsu-gu, Incheon 22012, Korea

Abstract

In this study, we integrated neural encoding and decoding into a unified framework for spatial information processing in the brain. Specifically, the neural representations of self-location in the hippocampus (HPC) and entorhinal cortex (EC) play crucial roles in spatial navigation. Intriguingly, these neural representations in these neighboring brain areas show stark differences. Whereas the place cells in the HPC fire as a unimodal function of spatial location, the grid cells in the EC show periodic tuning curves with different periods for different subpopulations (called modules). By combining an encoding model for this modular neural representation and a realistic decoding model based on belief propagation, we investigated the manner in which self-location is encoded by neurons in the EC and then decoded by downstream neurons in the HPC. Through the results of numerical simulations, we first show the positive synergy effects of the modular structure in the EC. The modular structure introduces more coupling between heterogeneous modules with different periodicities, which provides increased error-correcting capabilities. This is also demonstrated through a comparison of the beliefs produced for decoding two- and four-module codes. Whereas the former resulted in a complete decoding failure, the latter correctly recovered the self-location even from the same inputs. Further analysis of belief propagation during decoding revealed complex dynamics in information updates due to interactions among multiple modules having diverse scales. Therefore, the proposed unified framework allows one to investigate the overall flow of spatial information, closing the loop of encoding and decoding self-location in the brain.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3