Nonlinearities and Adaptation of Color Vision from Sequential Principal Curves Analysis

Author:

Laparra Valero1,Jiménez Sandra1,Camps-Valls Gustavo1,Malo Jesús1

Affiliation:

1. Image Processing Laboratory, Universitat de València, Catedrático A. Escardino, 46980 Paterna, València, Spain

Abstract

Mechanisms of human color vision are characterized by two phenomenological aspects: the system is nonlinear and adaptive to changing environments. Conventional attempts to derive these features from statistics use separate arguments for each aspect. The few statistical explanations that do consider both phenomena simultaneously follow parametric formulations based on empirical models. Therefore, it may be argued that the behavior does not come directly from the color statistics but from the convenient functional form adopted. In addition, many times the whole statistical analysis is based on simplified databases that disregard relevant physical effects in the input signal, as, for instance, by assuming flat Lambertian surfaces. In this work, we address the simultaneous statistical explanation of the nonlinear behavior of achromatic and chromatic mechanisms in a fixed adaptation state and the change of such behavior (i.e., adaptation) under the change of observation conditions. Both phenomena emerge directly from the samples through a single data-driven method: the sequential principal curves analysis (SPCA) with local metric. SPCA is a new manifold learning technique to derive a set of sensors adapted to the manifold using different optimality criteria. Here sequential refers to the fact that sensors (curvilinear dimensions) are designed one after the other, and not to the particular (eventually iterative) method to draw a single principal curve. Moreover, in order to reproduce the empirical adaptation reported under D65 and A illuminations, a new database of colorimetrically calibrated images of natural objects under these illuminants was gathered, thus overcoming the limitations of available databases. The results obtained by applying SPCA show that the psychophysical behavior on color discrimination thresholds, discount of the illuminant, and corresponding pairs in asymmetric color matching emerge directly from realistic data regularities, assuming no a priori functional form. These results provide stronger evidence for the hypothesis of a statistically driven organization of color sensors. Moreover, the obtained results suggest that the nonuniform resolution of color sensors at this low abstraction level may be guided by an error-minimization strategy rather than by an information-maximization goal.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3