Shapley Homology: Topological Analysis of Sample Influence for Neural Networks

Author:

Zhang Kaixuan1,Wang Qinglong2,Liu Xue2,Giles C. Lee1

Affiliation:

1. Information Sciences and Technology, Pennsylvania State University, State College, PA 16802, U.S.A.

2. School of Computer Science, McGill University, Montreal, Quebec H3A 0G4, Canada

Abstract

Data samples collected for training machine learning models are typically assumed to be independent and identically distributed (i.i.d.). Recent research has demonstrated that this assumption can be problematic as it simplifies the manifold of structured data. This has motivated different research areas such as data poisoning, model improvement, and explanation of machine learning models. In this work, we study the influence of a sample on determining the intrinsic topological features of its underlying manifold. We propose the Shapley homology framework, which provides a quantitative metric for the influence of a sample of the homology of a simplicial complex. Our proposed framework consists of two main parts: homology analysis, where we compute the Betti number of the target topological space, and Shapley value calculation, where we decompose the topological features of a complex built from data points to individual points. By interpreting the influence as a probability measure, we further define an entropy that reflects the complexity of the data manifold. Furthermore, we provide a preliminary discussion of the connection of the Shapley homology to the Vapnik-Chervonenkis dimension. Empirical studies show that when the zero-dimensional Shapley homology is used on neighboring graphs, samples with higher influence scores have a greater impact on the accuracy of neural networks that determine graph connectivity and on several regular grammars whose higher entropy values imply greater difficulty in being learned.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3