Optimal Decoding of Dynamic Stimuli by Heterogeneous Populations of Spiking Neurons: A Closed-Form Approximation

Author:

Harel Yuval1,Meir Ron1,Opper Manfred2

Affiliation:

1. Department of Electrical Engineering, Technion—Israel Institute of Technology, Haifa 320003, Israel

2. Department of Electrical Engineering and Computer Science, Technical University Berlin, Berlin 10587, Germany

Abstract

Neural decoding may be formulated as dynamic state estimation (filtering) based on point-process observations, a generally intractable problem. Numerical sampling techniques are often practically useful for the decoding of real neural data. However, they are less useful as theoretical tools for modeling and understanding sensory neural systems, since they lead to limited conceptual insight into optimal encoding and decoding strategies. We consider sensory neural populations characterized by a distribution over neuron parameters. We develop an analytically tractable Bayesian approximation to optimal filtering based on the observation of spiking activity that greatly facilitates the analysis of optimal encoding in situations deviating from common assumptions of uniform coding. Continuous distributions are used to approximate large populations with few parameters, resulting in a filter whose complexity does not grow with population size and allowing optimization of population parameters rather than individual tuning functions. Numerical comparison with particle filtering demonstrates the quality of the approximation. The analytic framework leads to insights that are difficult to obtain from numerical algorithms and is consistent with biological observations about the distribution of sensory cells' preferred stimuli.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3