A Self-Organized Neural Comparator

Author:

Ludueña Guillermo A.1,Gros Claudius1

Affiliation:

1. Institute for Theoretical Physics, Goethe University, Frankfurt am Main, Hessen 60438, Germany

Abstract

Learning algorithms need generally the ability to compare several streams of information. Neural learning architectures hence need a unit, a comparator, able to compare several inputs encoding either internal or external information, for instance, predictions and sensory readings. Without the possibility of comparing the values of predictions to actual sensory inputs, reward evaluation and supervised learning would not be possible. Comparators are usually not implemented explicitly. Necessary comparisons are commonly performed by directly comparing the respective activities one-to-one. This implies that the characteristics of the two input streams (like size and encoding) must be provided at the time of designing the system. It is, however, plausible that biological comparators emerge from self-organizing, genetically encoded principles, which allow the system to adapt to the changes in the input and the organism. We propose an unsupervised neural circuitry, where the function of input comparison emerges via self-organization only from the interaction of the system with the respective inputs, without external influence or supervision. The proposed neural comparator adapts in an unsupervised form according to the correlations present in the input streams. The system consists of a multilayer feedforward neural network, which follows a local output minimization (anti-Hebbian) rule for adaptation of the synaptic weights. The local output minimization allows the circuit to autonomously acquire the capability of comparing the neural activities received from different neural populations, which may differ in population size and the neural encoding used. The comparator is able to compare objects never encountered before in the sensory input streams and evaluate a measure of their similarity even when differently encoded.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3