Cross-Entropy Pruning for Compressing Convolutional Neural Networks

Author:

Bao Rongxin1,Yuan Xu1,Chen Zhikui1,Ma Ruixin1

Affiliation:

1. School of Software, Dalian University of Technology, Dalian, Liaoning, China

Abstract

The success of CNNs is accompanied by deep models and heavy storage costs. For compressing CNNs, we propose an efficient and robust pruning approach, cross-entropy pruning (CEP). Given a trained CNN model, connections were divided into groups in a group-wise way according to their corresponding output neurons. All connections with their cross-entropy errors below a grouping threshold were then removed. A sparse model was obtained and the number of parameters in the baseline model significantly reduced. This letter also presents a highest cross-entropy pruning (HCEP) method that keeps a small portion of weights with the highest CEP. This method further improves the accuracy of CEP. To validate CEP, we conducted the experiments on low redundant networks that are hard to compress. For the MNIST data set, CEP achieves an 0.08% accuracy drop required by LeNet-5 benchmark with only 16% of original parameters. Our proposed CEP also reduces approximately 75% of the storage cost of AlexNet on the ILSVRC 2012 data set, increasing the top-1 errorby only 0.4% and top-5 error by only 0.2%. Compared with three existing methods on LeNet-5, our proposed CEP and HCEP perform significantly better than the existing methods in terms of the accuracy and stability. Some computer vision tasks on CNNs such as object detection and style transfer can be computed in a high-performance way using our CEP and HCEP strategies.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Reference28 articles.

1. EIE

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A roulette wheel-based pruning method to simplify cumbersome deep neural networks;Neural Computing and Applications;2024-05-02

2. Computer Network Security Evaluation Method Based on GABP Model;2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE);2023-11-02

3. Neural network pruning based on channel attention mechanism;Connection Science;2022-08-24

4. Remface: Study on Mini-sized Mobilenetv2 and Retinaface;Lecture Notes in Computer Science;2022

5. Methods for Pruning Deep Neural Networks;IEEE Access;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3