Kernels for Longitudinal Data with Variable Sequence Length and Sampling Intervals

Author:

Lu Zhengdong1,Leen Todd K.2,Kaye Jeffrey3

Affiliation:

1. Microsoft Research Asia, Beijing 100080, P.R.C.

2. Department of Biomedical Engineering, Oregon Health & Science University, Beaverton, OR 97006, U.S.A.

3. Layton Aging & Alzheimer's Disease Center, Oregon Health & Science University, Portland, OR 97239, U.S.A.

Abstract

We develop several kernel methods for classification of longitudinal data and apply them to detect cognitive decline in the elderly. We first develop mixed-effects models, a type of hierarchical empirical Bayes generative models, for the time series. After demonstrating their utility in likelihood ratio classifiers (and the improvement over standard regression models for such classifiers), we develop novel Fisher kernels based on mixture of mixed-effects models and use them in support vector machine classifiers. The hierarchical generative model allows us to handle variations in sequence length and sampling interval gracefully. We also give nonparametric kernels not based on generative models, but rather on the reproducing kernel Hilbert space. We apply the methods to detecting cognitive decline from longitudinal clinical data on motor and neuropsychological tests. The likelihood ratio classifiers based on the neuropsychological tests perform better than than classifiers based on the motor behavior. Discriminant classifiers performed better than likelihood ratio classifiers for the motor behavior tests.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3