Analyzing Functional Connectivity Using a Network Likelihood Model of Ensemble Neural Spiking Activity

Author:

Okatan Murat1,Wilson Matthew A.2,Brown Emery N.3

Affiliation:

1. Neuroscience Statistics Research Laboratory, Department of Anesthesia and Critical Care, Massachusetts General Hospital, Boston, MA 02114-2698, U.S.A.,

2. Picower Center for Learning and Memory, Riken-MIT Neuroscience Research Center, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A.,

3. Neuroscience Statistics Research Laboratory, Department of Anesthesia and Critical Care, Massachusetts General Hospital, and Division of Health Sciences and Technology, Harvard Medical School/Massachusetts Institute of Technology, Boston, MA 02114-2698, U.S.A.,

Abstract

Analyzing the dependencies between spike trains is an important step in understanding how neurons work in concert to represent biological signals. Usually this is done for pairs of neurons at a time using correlation-based techniques. Chornoboy, Schramm, and Karr (1988) proposed maximum likelihood methods for the simultaneous analysis of multiple pair-wise interactions among an ensemble of neurons. One of these methods is an iterative, continuous-time estimation algorithm for a network likelihood model formulated in terms of multiplicative conditional intensity functions. We devised a discrete-time version of this algorithm that includes a new, efficient computational strategy, a principled method to compute starting values, and a principled stopping criterion. In an analysis of simulated neural spike trains from ensembles of interacting neurons, the algorithm recovered the correct connectivity matrices and interaction parameters. In the analysis of spike trains from an ensemble of rat hippocampal place cells, the algorithm identified a connectivity matrix and interaction parameters consistent with the pattern of conjoined firing predicted by the overlap of the neurons' spatial receptive fields. These results suggest that the network likelihood model can be an efficient tool for the analysis of ensemble spiking activity.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 185 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3