Affiliation:
1. Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong, China
Abstract
Support vector machine (SVM) soft margin classifiers are important learning algorithms for classification problems. They can be stated as convex optimization problems and are suitable for a large data setting. Linear programming SVM classifiers are especially efficient for very large size samples. But little is known about their convergence, compared with the well-understood quadratic programming SVM classifier. In this article, we point out the difficulty and provide an error analysis. Our analysis shows that the convergence behavior of the linear programming SVM is almost the same as that of the quadratic programming SVM. This is implemented by setting a stepping-stone between the linear programming SVM and the classical 1-norm soft margin classifier. An upper bound for the misclassification error is presented for general probability distributions. Explicit learning rates are derived for deterministic and weakly separable distributions, and for distributions satisfying some Tsybakov noise condition.
Subject
Cognitive Neuroscience,Arts and Humanities (miscellaneous)
Cited by
132 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献