Embodying Spatial Sound Synthesis with AI in Two Compositions for Instruments and 3-D Electronics

Author:

Einbond Aaron1,Carpentier Thibaut2,Schwarz Diemo3,Bresson Jean4

Affiliation:

1. Department of Performing Arts City, University of London Northampton Square, London EC1V 0HB, UK Aaron.Einbond@city.ac.uk

2. Institut de Recherche et de Coordination Acoustique/Musique (IRCAM) STMS Lab, CNRS, Sorbonne Université, Ministère de la Culture 1, place Igor Stravinsky, 75004 Paris, France thibaut.carpentier@ircam.fr

3. Institut de Recherche et de Coordination Acoustique/Musique (IRCAM) STMS Lab, CNRS, Sorbonne Université, Ministère de la Culture 1, place Igor Stravinsky, 75004 Paris, France diemo.schwarz@ircam.fr

4. Ableton Schönhauser Allee 6–7, 10119 Berlin, Germany jean.bresson@ircam.fr

Abstract

Abstract The situated spatial presence of musical instruments has been well studied in the fields of acoustics and music perception research, but so far it has not been the focus of human–AI interaction. We respond critically to this trend by seeking to reembody interactive electronics using data derived from natural acoustic phenomena. Two musical works, composed for human soloist and computer-generated live electronics, are intended to situate the listener in an immersive sonic environment in which real and virtual sources blend seamlessly. To do so, we experimented with two contrasting reproduction setups: a surrounding Ambisonic loudspeaker dome and a compact spherical loudspeaker array for radiation synthesis. A large database of measured radiation patterns of orchestral instruments served as a training set for machine learning models to control spatially rich 3-D patterns for electronic sounds. These are exploited during performance in response to live sounds captured with a spherical microphone array and used to train computer models of improvisation and to trigger corpus-based spatial synthesis. We show how AI techniques are useful to utilize complex, multidimensional, spatial data in the context of computer-assisted composition and human–computer interactive improvisation.

Publisher

MIT Press

Reference42 articles.

1. Factor Oracle: A New Structure for Pattern Matching;Allauzen;Proceedings of the Annual Conference on Current Trends in Theory and Practice of Informatics,1999

2. Using Factor Oracles for Machine Improvisation;Assayag;Soft Computing,2004

3. OMax Brothers: A Dynamic Topology of Agents for Improvization Learning;Assayag;Proceedings of the ACM Workshop on Audio and Music Computing Multimedia,2006

4. Next-Generation Computer-Aided Composition Environment: A New Implementation of OpenMusic;Bresson;Proceedings of the International Computer Music Conference,2017

5. A New Implementation of Spat in Max;Carpentier;Proceedings of the Sound and Music Computing Conference,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3