Learning of Hierarchical Temporal Structures for Guided Improvisation

Author:

Déguernel Ken1,Vincent Emmanuel2,Nika Jérôme3,Assayag Gérard4,Smaïli Kamel5

Affiliation:

1. Institut de Recherche et Coordination Acoustique/Musique 1 Place Igor Stravinsky 75004 Paris, France ken.deguernel@ircam.fr

2. Inria Université de Lorraine 615 Rue du Jardin Botanique 54600 Villers-lès-Nancy, France emmanuel.vincent@inria.fr

3. Institut de Recherche et Coordination Acoustique/Musique 1 Place Igor Stravinsky 75004 Paris, France jerome.nika@ircam.fr

4. Institut de Recherche et Coordination Acoustique/Musique 1 Place Igor Stravinsky 75004 Paris, France gerard.assayag@ircam.fr

5. Inria Université de Lorraine 615 Rue du Jardin Botanique 54600 Villers-lès-Nancy, France kamel.smaili@loria.fr

Abstract

Abstract This article focuses on learning the hierarchical structure of what we call a “temporal scenario” (for instance, a chord progression) to perform automatic improvisation consistently over several different time scales. We first present a way to represent hierarchical structures with a phrase structure grammar. Such a grammar enables us to analyze a scenario at several levels of organization, creating a “multilevel scenario.” We then develop a method to automatically induce this grammar from a corpus, based on sequence selection with mutual information. We applied this method to a corpus of transcribed improvisations based on the chord sequence, also with chord substitutions, from George Gershwin's “I Got Rhythm.” From these we obtained multilevel scenarios similar to the analyses performed by professional musicians. We then present a novel heuristic approach, exploiting the multilevel structure of a scenario to guide the improvisation with anticipatory behavior in an improvisation paradigm driven by a factor oracle. This method ensures consistency of the improvisation with regard to the global form, and it opens up possibilities when playing on chords that do not exist in memory. This system was evaluated by professional improvisers during listening sessions and received excellent feedback.

Publisher

MIT Press - Journals

Subject

Computer Science Applications,Music,Media Technology

Reference21 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3