FAIR Convergence Matrix: Optimizing the Reuse of Existing FAIR-Related Resources

Author:

Sustkova Hana Pergl1ORCID,Hettne Kristina Maria2,Wittenburg Peter3,Jacobsen Annika4,Kuhn Tobias5,Pergl Robert6,Slifka Jan6,McQuilton Peter7,Magagna Barbara8,Sansone Susanna-Assunta7,Stocker Markus9,Imming Melanie10,Lannom Larry11,Musen Mark12,Schultes Erik1ORCID

Affiliation:

1. GO FAIR International Support and Coordination Office, Leiden, The Netherlands

2. Centre for Digital Scholarship, Leiden University Libraries, Leiden, The Netherlands

3. Max Planck Computing and Data Facility, Gießenbachstraße 2, 85748 Garching, Germany

4. Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands

5. Department of Computer Science, Vrije Universiteit Amsterdam, De Boelelaan 11051081 HV Amsterdam, The Netherlands

6. Czech Technical University in Prague, Faculty of Information Technology (FIT CTU), 160 00 Prague 6, Czech Republic

7. Oxford e-Research Centre, Department of Engineering Sciences, University of Oxford, Oxford OX13PJ, UK

8. Environment Agency Austria, A-1090 Vienna, Austria

9. TIB Leibniz Information Centre for Science and Technology, Hannover, Germany

10. SURF, Utrecht 3511 EP, The Netherlands

11. Corporation for National Research Initiatives (CNRI), Reston, Virginia 20191, USA

12. Stanford Center for Biomedical Informatics Research, Stanford, CA 94305, USA

Abstract

The FAIR principles articulate the behaviors expected from digital artifacts that are Findable, Accessible, Interoperable and Reusable by machines and by people. Although by now widely accepted, the FAIR Principles by design do not explicitly consider actual implementation choices enabling FAIR behaviors. As different communities have their own, often well-established implementation preferences and priorities for data reuse, coordinating a broadly accepted, widely used FAIR implementation approach remains a global challenge. In an effort to accelerate broad community convergence on FAIR implementation options, the GO FAIR community has launched the development of the FAIR Convergence Matrix. The Matrix is a platform that compiles for any community of practice, an inventory of their self-declared FAIR implementation choices and challenges. The Convergence Matrix is itself a FAIR resource, openly available, and encourages voluntary participation by any self-identified community of practice (not only the GO FAIR Implementation Networks). Based on patterns of use and reuse of existing resources, the Convergence Matrix supports the transparent derivation of strategies that optimally coordinate convergence on standards and technologies in the emerging Internet of FAIR Data and Services.

Publisher

MIT Press - Journals

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3