Canonical Workflow for Machine Learning Tasks

Author:

Blanchi Christophe1,Gebre Binyam2,Wittenburg Peter3

Affiliation:

1. DONA Foundation, C/O Université de Genève, Rue du Général-Dufour 24, 1204 Genève, Switzerland

2. bol.com, Papendorpseweg 100, 3528 BJ Utrecht, The Netherlands

3. FDO Forum, Gemeindweg 55, 47533 Kleve, Germany

Abstract

Abstract There is a huge gap between (1) the state of workflow technology on the one hand and the practices in the many labs working with data driven methods on the other and (2) the awareness of the FAIR principles and the lack of changes in practices during the last 5 years. The CWFR concept has been defined which is meant to combine these two intentions, increasing the use of workflow technology and improving FAIR compliance. In the study described in this paper we indicate how this could be applied to machine learning which is now used by almost all research disciplines with the well-known effects of a huge lack of repeatability and reproducibility. Researchers will only change practices if they can work efficiently and are not loaded with additional tasks. A comprehensive CWFR framework would be an umbrella for all steps that need to be carried out to do machine learning on selected data collections and immediately create a comprehensive and FAIR compliant documentation. The researcher is guided by such a framework and information once entered can easily be shared and reused. The many iterations normally required in machine learning can be dealt with efficiently using CWFR methods. Libraries of components that can be easily orchestrated using FAIR Digital Objects as a common entity to document all actions and to exchange information between steps without the researcher needing to understand anything about PIDs and FDO details is probably the way to increase efficiency in repeating research workflows. As the Galaxy project indicates, the availability of supporting tools will be important to let researchers use these methods. Other as the Galaxy framework suggests, however, it would be necessary to include all steps necessary for doing a machine learning task including those that require human interaction and to document all phases with the help of structured FDOs.

Publisher

MIT Press - Journals

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference14 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3