Affiliation:
1. INESC-ID, Instituto Superior Técnico. vania.mendonca@tecnico.ulisboa.pt
2. INESC-ID, Instituto Superior Técnico, Unbabel AI. ricardo.rei@unbabel.com
3. INESC-ID, Instituto Superior Técnico. luisa.coheur@tecnico.ulisboa.pt
4. INESC-ID, Instituto Superior Técnico. jose.alberto.sardinha@tecnico.ulisboa.pt
Abstract
Abstract
Active learning can play an important role in low-resource settings (i.e., where annotated data is scarce), by selecting which instances may be more worthy to annotate. Most active learning approaches for Machine Translation assume the existence of a pool of sentences in a source language, and rely on human annotators to provide translations or post-edits, which can still be costly. In this article, we apply active learning to a real-world human-in-the-loop scenario in which we assume that: (1) the source sentences may not be readily available, but instead arrive in a stream; (2) the automatic translations receive feedback in the form of a rating, instead of a correct/edited translation, since the human-in-the-loop might be a user looking for a translation, but not be able to provide one. To tackle the challenge of deciding whether each incoming pair source–translations is worthy to query for human feedback, we resort to a number of stream-based active learning query strategies. Moreover, because we do not know in advance which query strategy will be the most adequate for a certain language pair and set of Machine Translation models, we propose to dynamically combine multiple strategies using prediction with expert advice. Our experiments on different language pairs and feedback settings show that using active learning allows us to converge on the best Machine Translation systems with fewer human interactions. Furthermore, combining multiple strategies using prediction with expert advice outperforms several individual active learning strategies with even fewer interactions, particularly in partial feedback settings.
Subject
Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. CFD-ML: Stream-based active learning of computational fluid dynamics simulations for efficient product design;Computers in Industry;2024-10
2. Design and Application of Online Translation System Based on Web;2023 IEEE International Conference on Paradigm Shift in Information Technologies with Innovative Applications in Global Scenario (ICPSITIAGS);2023-12-28