Affiliation:
1. Queen’s University Belfast. mormerod01@qub.ac.uk
2. Queen’s University Belfast
Abstract
Abstract
Despite the success of Transformer-based language models in a wide variety of natural language processing tasks, our understanding of how these models process a given input in order to represent task-relevant information remains incomplete. In this work, we focus on semantic composition and examine how Transformer-based language models represent semantic information related to the meaning of English noun-noun compounds. We probe Transformer-based language models for their knowledge of the thematic relations that link the head nouns and modifier words of compounds (e.g., kitchen chair: a chair located in a kitchen). Firstly, using a dataset featuring groups of compounds with shared lexical or semantic features, we find that token representations of six Transformer-based language models distinguish between pairs of compounds based on whether they use the same thematic relation. Secondly, we utilize fine-grained vector representations of compound semantics derived from human annotations, and find that token vectors from several models elicit a strong signal of the semantic relations used in the compounds. In a novel “compositional probe” setting, where we compare the semantic relation signal in mean-pooled token vectors of compounds to mean-pooled token vectors when the two constituent words appear in separate sentences, we find that the Transformer-based language models that best represent the semantics of noun-noun compounds also do so substantially better than in the control condition where the two constituent works are processed separately. Overall, our results shed light on the ability of Transformer-based language models to support compositional semantic processes in representing the meaning of noun-noun compounds.
Subject
Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献