Similarity-Driven Semantic Role Induction via Graph Partitioning

Author:

Lang Joel1,Lapata Mirella2

Affiliation:

1. University of Geneva

2. University of Edinburgh

Abstract

As in many natural language processing tasks, data-driven models based on supervised learning have become the method of choice for semantic role labeling. These models are guaranteed to perform well when given sufficient amount of labeled training data. Producing this data is costly and time-consuming, however, thus raising the question of whether unsupervised methods offer a viable alternative. The working hypothesis of this article is that semantic roles can be induced without human supervision from a corpus of syntactically parsed sentences based on three linguistic principles: (1) arguments in the same syntactic position (within a specific linking) bear the same semantic role, (2) arguments within a clause bear a unique role, and (3) clusters representing the same semantic role should be more or less lexically and distributionally equivalent. We present a method that implements these principles and formalizes the task as a graph partitioning problem, whereby argument instances of a verb are represented as vertices in a graph whose edges express similarities between these instances. The graph consists of multiple edge layers, each one capturing a different aspect of argument-instance similarity, and we develop extensions of standard clustering algorithms for partitioning such multi-layer graphs. Experiments for English and German demonstrate that our approach is able to induce semantic role clusters that are consistently better than a strong baseline and are competitive with the state of the art.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3