Generation of Compound Words in Statistical Machine Translation into Compounding Languages

Author:

Stymne Sara1,Cancedda Nicola2,Ahrenberg Lars3

Affiliation:

1. Uppsala University

2. Xerox Research Centre Europe

3. Linköping University

Abstract

In this article we investigate statistical machine translation (SMT) into Germanic languages, with a focus on compound processing. Our main goal is to enable the generation of novel compounds that have not been seen in the training data. We adopt a split-merge strategy, where compounds are split before training the SMT system, and merged after the translation step. This approach reduces sparsity in the training data, but runs the risk of placing translations of compound parts in non-consecutive positions. It also requires a postprocessing step of compound merging, where compounds are reconstructed in the translation output. We present a method for increasing the chances that components that should be merged are translated into contiguous positions and in the right order and show that it can lead to improvements both by direct inspection and in terms of standard translation evaluation metrics. We also propose several new methods for compound merging, based on heuristics and machine learning, which outperform previously suggested algorithms. These methods can produce novel compounds and a translation with at least the same overall quality as the baseline. For all subtasks we show that it is useful to include part-of-speech based information in the translation process, in order to handle compounds.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3