The Experience of Meaningful Coincidences Is Associated with Stronger Alpha Power Increases during an Eyes-closed Resting Condition: A Bayesian Replication Approach

Author:

Rominger Christian1ORCID,Perchtold-Stefan Corinna M.1,Fink Andreas1

Affiliation:

1. University of Graz, Austria

Abstract

Abstract Recognizing and perceiving meaningful patterns in an ever-changing environment is fundamental to (human) beings. Apophenia, patternicity, and the propensity to perceive meaningful coincidences might result from the human brain working as a prediction machine that constantly matches sensory information to prior expectations. The propensity for Type I errors varies between people and, at its extreme, is associated with symptoms of schizophrenia. However, on a nonclinical level seeing meaning in randomness might be benevolent and was found to be associated with creativity and openness. However, hardly any neuroscientific investigation has examined EEG patterns of the propensity to experience meaningful coincidences in this manner. We hypothesized deviations in brain functions as one potential reason why some people experience more meaning in random arrangements than others. The gating by inhibition theory suggests that alpha power increases represent basic control mechanisms of sensory processes during varying task requirements. We found that people perceiving more meaningful coincidences had higher alpha power during an eyes-closed versus eyes-opened condition compared with people experiencing less meaningful coincidences. This indicates deviations in the sensory inhibition mechanism of the brain, which are critically relevant for higher cognitive functions. Applying Bayesian statistics, we replicated this finding in another independent sample.

Publisher

MIT Press

Subject

Cognitive Neuroscience

Reference78 articles.

1. Effects of neuronic shutter observed in the EEG alpha rhythm;Alexander;eNeuro,2020

2. EEG differences between eyes-closed and eyes-open resting conditions;Barry;Clinical Neurophysiology,2007

3. Layer and rhythm specificity for predictive routing;Bastos;Proceedings of the National Academy of Sciences, U.S.A.,2020

4. Interpreting EEG alpha activity;Bazanova;Neuroscience & Biobehavioral Reviews,2014

5. Creativity and the default network: A functional connectivity analysis of the creative brain at rest;Beaty;Neuropsychologia,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3