IMPROBED: Multiple Problem-Solving Brain via Evolved Developmental Programs

Author:

Miller Julian Francis1

Affiliation:

1. University of York, Department of Computer Science. julian.miller@york.ac.uk

Abstract

Abstract Artificial neural networks (ANNs) were originally inspired by the brain; however, very few models use evolution and development, both of which are fundamental to the construction of the brain. We describe a simple neural model, called IMPROBED, in which two neural programs construct an artificial brain that can simultaneously solve multiple computational problems. One program represents the neuron soma and the other the dendrite. The soma program decides whether neurons move, change, die, or replicate. The dendrite program decides whether dendrites extend, change, die, or replicate. Since developmental programs build networks that change over time, it is necessary to define new problem classes that are suitable to evaluate such approaches. We show that the pair of evolved programs can build a single network from which multiple conventional ANNs can be extracted, each of which can solve a different computational problem. Our approach is quite general and it could be applied to a much wider variety of problems.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Julian Francis Miller, 1955–2022;Artificial Life;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3