Evolution Towards Criticality in Ising Neural Agents

Author:

Khajehabdollahi Sina1,Witkowski Olaf234

Affiliation:

1. University of Western Ontario.

2. Cross Compass Ltd., Cross Labs

3. Tokyo Institute of Technology, Earth-Life Science Institute

4. Institute for Advanced Study

Abstract

Criticality is thought to be crucial for complex systems to adapt at the boundary between regimes with different dynamics, where the system may transition from one phase to another. Numerous systems, from sandpiles to gene regulatory networks to swarms to human brains, seem to work towards preserving a precarious balance right at their critical point. Understanding criticality therefore seems strongly related to a broad, fundamental theory for the physics of life as it could be, which still lacks a clear description of how life can arise and maintain itself in complex systems. In order to investigate this crucial question, we model populations of Ising agents competing for resources in a simple 2D environment subject to an evolutionary algorithm. We then compare its evolutionary dynamics under different experimental conditions. We demonstrate the utility that arises at a critical state and contrast it with the behaviors and dynamics that arise far from criticality. The results show compelling evidence that not only is a critical state remarkable in its ability to adapt and find solutions to the environment, but the evolving parameters in the agents tend to flow towards criticality if starting from a supercritical regime. We present simulations showing that a system in a supercritical state will tend to self-organize towards criticality, in contrast to a subcritical state, which remains subcritical though it is still capable of adapting and increasing its fitness.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,General Biochemistry, Genetics and Molecular Biology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3