Fast Approximate Search in Large Dictionaries

Author:

Mihov Stoyan1,Schulz Klaus U.2

Affiliation:

1. Bulgarian Academy of Sciences, Linguistic Modelling Department, Institute for Parallel Processing, Bulgarian Academy of Sciences, 25A, Akad. G. Bonchev Str., 1113 Sofia, Bulgaria.

2. University of Munich, Centrum für Informations-und Sprachverarbeitung, Ludwig-Maximilians-Universität-München, Oettingenstr. 67, 80538 Munchen, Germany.

Abstract

The need to correct garbled strings arises in many areas of natural language processing. If a dictionary is available that covers all possible input tokens, a natural set of candidates for correcting an erroneous input P is the set of all words in the dictionary for which the Levenshtein distance to Pdoes not exceed a given (small) bound k. In this article we describe methods for efficiently selecting such candidate sets. After introducing as a starting point a basic correction method based on the concept of a “universal Levenshtein automaton,” we show how two filtering methods known from the field of approximate text search can be used to improve the basic procedure in a significant way. The first method, which uses standard dictionaries plus dictionaries with reversed words, leads to very short correction times for most classes of input strings. Our evaluation results demonstrate that correction times for fixed-distance bounds depend on the expected number of correction candidates, which decreases for longer input words. Similarly the choice of an optimal filtering method depends on the length of the input words.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic detection of relation assertion errors and induction of relation constraints;Semantic Web;2020-08-25

2. Token-based spelling variant detection in Middle Low German texts;Language Resources and Evaluation;2019-02-09

3. A Compiler Framework for Fixed-topology Non-deterministic Finite Automata on SIMD Platforms;INT C PAR DISTRIB SY;2018

4. A Memory-Efficient GPU Method for Hamming and Levenshtein Distance Similarity;2017 IEEE 24th International Conference on High Performance Computing (HiPC);2017-12

5. Approximate Search in Digital Forensics;Computer and Network Security Essentials;2017-08-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3