Learning Mixture Models of Spatial Coherence

Author:

Becker Suzanna1,Hinton Geoffrey E.1

Affiliation:

1. Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 1A4

Abstract

We have previously described an unsupervised learning procedure that discovers spatially coherent properties of the world by maximizing the information that parameters extracted from different parts of the sensory input convey about some common underlying cause. When given random dot stereograms of curved surfaces, this procedure learns to extract surface depth because that is the property that is coherent across space. It also learns how to interpolate the depth at one location from the depths at nearby locations (Becker and Hinton 1992b). In this paper, we propose two new models that handle surfaces with discontinuities. The first model attempts to detect cases of discontinuities and reject them. The second model develops a mixture of expert interpolators. It learns to detect the locations of discontinuities and to invoke specialized, asymmetric interpolators that do not cross the discontinuities.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3