Regularization Theory and Neural Networks Architectures

Author:

Girosi Federico1,Jones Michael1,Poggio Tomaso1

Affiliation:

1. Center for Biological and Computational Learning, Department of Brain and Cognitive Sciences and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 USA

Abstract

We had previously shown that regularization principles lead to approximation schemes that are equivalent to networks with one layer of hidden units, called regularization networks. In particular, standard smoothness functionals lead to a subclass of regularization networks, the well known radial basis functions approximation schemes. This paper shows that regularization networks encompass a much broader range of approximation schemes, including many of the popular general additive models and some of the neural networks. In particular, we introduce new classes of smoothness functionals that lead to different classes of basis functions. Additive splines as well as some tensor product splines can be obtained from appropriate classes of smoothness functionals. Furthermore, the same generalization that extends radial basis functions (RBF) to hyper basis functions (HBF) also leads from additive models to ridge approximation models, containing as special cases Breiman's hinge functions, some forms of projection pursuit regression, and several types of neural networks. We propose to use the term generalized regularization networks for this broad class of approximation schemes that follow from an extension of regularization. In the probabilistic interpretation of regularization, the different classes of basis functions correspond to different classes of prior probabilities on the approximating function spaces, and therefore to different types of smoothness assumptions. In summary, different multilayer networks with one hidden layer, which we collectively call generalized regularization networks, correspond to different classes of priors and associated smoothness functionals in a classical regularization principle. Three broad classes are (1) radial basis functions that can be generalized to hyper basis functions, (2) some tensor product splines, and (3) additive splines that can be generalized to schemes of the type of ridge approximation, hinge functions, and several perceptron-like neural networks with one hidden layer.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3