Neural Network Model of the Cerebellum: Temporal Discrimination and the Timing of Motor Responses

Author:

Buonomano Dean V.1,Mauk Michael D.2

Affiliation:

1. Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, TX 77225 USA and Departamento de Matemática Aplicada, lnstituto de Matemática, Universidade Estadual de Campinas, Campinas, Brasil, and Laboratório de Psicobiologia, Universidade de São Paulo, Ribeirão Preto, Brasil

2. Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, TX 77225 USA

Abstract

Substantial evidence has established that the cerebellum plays an important role in the generation of movements. An important aspect of motor output is its timing in relation to external stimuli or to other components of a movement. Previous studies suggest that the cerebellum plays a role in the timing of movements. Here we describe a neural network model based on the synaptic organization of the cerebellum that can generate timed responses in the range of tens of milliseconds to seconds. In contrast to previous models, temporal coding emerges from the dynamics of the cerebellar circuitry and depends neither on conduction delays, arrays of elements with different time constants, nor populations of elements oscillating at different frequencies. Instead, time is extracted from the instantaneous granule cell population vector. The subset of active granule cells is time-varying due to the granule—Golgi—granule cell negative feedback. We demonstrate that the population vector of simulated granule cell activity exhibits dynamic, nonperiodic trajectories in response to a periodic input. With time encoded in this manner, the output of the network at a particular interval following the onset of a stimulus can be altered selectively by changing the strength of granule → Purkinje cell connections for those granule cells that are active during the target time window. The memory of the reinforcement at that interval is subsequently expressed as a change in Purkinje cell activity that is appropriately timed with respect to stimulus onset. Thus, the present model demonstrates that a network based on cerebellar circuitry can learn appropriately timed responses by encoding time as the population vector of granule cell activity.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 259 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3