Learning Factorial Codes by Predictability Minimization

Author:

Schmidhuber Jürgen1

Affiliation:

1. Department of Computer Science, University of Colorado, Boulder, CO 80309 USA

Abstract

I propose a novel general principle for unsupervised learning of distributed nonredundant internal representations of input patterns. The principle is based on two opposing forces. For each representational unit there is an adaptive predictor, which tries to predict the unit from the remaining units. In turn, each unit tries to react to the environment such that it minimizes its predictability. This encourages each unit to filter "abstract concepts" out of the environmental input such that these concepts are statistically independent of those on which the other units focus. I discuss various simple yet potentially powerful implementations of the principle that aim at finding binary factorial codes (Barlow et al. 1989), i.e., codes where the probability of the occurrence of a particular input is simply the product of the probabilities of the corresponding code symbols. Such codes are potentially relevant for (1) segmentation tasks, (2) speeding up supervised learning, and (3) novelty detection. Methods for finding factorial codes automatically implement Occam's razor for finding codes using a minimal number of units. Unlike previous methods the novel principle has a potential for removing not only linear but also nonlinear output redundancy. Illustrative experiments show that algorithms based on the principle of predictability minimization are practically feasible. The final part of this paper describes an entirely local algorithm that has a potential for learning unique representations of extended input sequences.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 132 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Discriminative Feature Enhancement Network for few-shot classification and beyond;Expert Systems with Applications;2024-12

2. Fast and High-resolution Image Generation Based on Improved DCGAN;Transactions on Computer Science and Intelligent Systems Research;2024-08-12

3. Computational role of structure in neural activity and connectivity;Trends in Cognitive Sciences;2024-07

4. Recent Trends in Text-to-Image GAN;2024 International Conference on Intelligent Systems for Cybersecurity (ISCS);2024-05-03

5. Reducing Bias in Face Recognition;Handbook of Face Recognition;2023-12-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3