The global neuronal workspace as a broadcasting network

Author:

Wajnerman Paz Abel12

Affiliation:

1. Department of Philosophy, Universidad Alberto Hurtado, Santiago, Chile

2. Neuroethics Buenos Aires, Buenos Aires, Argentina

Abstract

Abstract A new strategy for moving forward in the characterization of the global neuronal workspace (GNW) is proposed. According to Dehaene, Changeux, and colleagues (Dehaene, 2014, pp. 304, 312; Dehaene & Changeux, 2004, 2005), broadcasting is the main function of the GNW. However, the dynamic network properties described by recent graph theoretic GNW models are consistent with many large-scale communication processes that are different from broadcasting. We propose to apply a different graph theoretic approach, originally developed for optimizing information dissemination in communication networks, which can be used to identify the pattern of frequency and phase-specific directed functional connections that the GNW would exhibit only if it were a broadcasting network.

Funder

Fondo Nacional de Desarrollo Científico y Tecnológico

Agencia Nacional de Investigación y Desarrollo

Publisher

MIT Press

Subject

Applied Mathematics,Artificial Intelligence,Computer Science Applications,General Neuroscience

Reference107 articles.

1. Machine learning for the detection of social anxiety disorder using effective connectivity and graph theory measures;Al-Ezzi,2022

2. An energy budget for signaling in the grey matter of the brain;Attwell;Journal of Cerebral Blood Flow and Metabolism,2001

3. Communication dynamics in complex brain networks;Avena-Koenigsberger;Nature Reviews Neuroscience,2018

4. Magnetoencephalography for brain electrophysiology and imaging;Baillet;Nature Neuroscience,2017

5. Possible principles underlying the transformation of sensory messages;Barlow;Sensory Communication,1961

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3