The self-organized learning of noisy environmental stimuli requires distinct phases of plasticity

Author:

Krüppel Steffen12,Tetzlaff Christian12

Affiliation:

1. Department of Computational Neuroscience, Third Institute of Physics - Biophysics, Georg-August-University, Göttingen, Germany

2. Bernstein Center for Computational Neuroscience, Georg-August-University, Göttingen, Germany

Abstract

Along sensory pathways, representations of environmental stimuli become increasingly sparse and expanded. If additionally the feed-forward synaptic weights are structured according to the inherent organization of stimuli, the increase in sparseness and expansion leads to a reduction of sensory noise. However, it is unknown how the synapses in the brain form the required structure, especially given the omnipresent noise of environmental stimuli. Here, we employ a combination of synaptic plasticity and intrinsic plasticity—adapting the excitability of each neuron individually—and present stimuli with an inherent organization to a feed-forward network. We observe that intrinsic plasticity maintains the sparseness of the neural code and thereby allows synaptic plasticity to learn the organization of stimuli in low-noise environments. Nevertheless, even high levels of noise can be handled after a subsequent phase of readaptation of the neuronal excitabilities by intrinsic plasticity. Interestingly, during this phase the synaptic structure has to be maintained. These results demonstrate that learning and recalling in the presence of noise requires the coordinated interplay between plasticity mechanisms adapting different properties of the neuronal circuit.

Funder

Horizon 2020 Framework Programme

Deutsche Forschungsgemeinschaft

Publisher

MIT Press - Journals

Subject

Applied Mathematics,Artificial Intelligence,Computer Science Applications,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3