Decoding Movement Trajectories Through a T-Maze Using Point Process Filters Applied to Place Field Data from Rat Hippocampal Region CA1

Author:

Huang Yifei1,Brandon Mark P.2,Griffin Amy L.2,Hasselmo Michael E.2,Eden Uri T.1

Affiliation:

1. Department of Mathematics and Statistics, Boston University, Boston, MA 02215, U.S.A.

2. Center for Memory and Brain, Department of Psychology and Program in Neuroscience, Boston University, Boston, MA, 02215, U.S.A.

Abstract

Firing activity from neural ensembles in rat hippocampus has been previously used to determine an animal's position in an open environment and separately to predict future behavioral decisions. However, a unified statistical procedure to combine information about position and behavior in environments with complex topological features from ensemble hippocampal activity has yet to be described. Here we present a two-stage computational framework that uses point process filters to simultaneously estimate the animal's location and predict future behavior from ensemble neural spiking activity. First, in the encoding stage, we linearized a two-dimensional T-maze, and used spline-based generalized linear models to characterize the place-field structure of different neurons. All of these neurons displayed highly specific position-dependent firing, which frequently had several peaks at multiple locations along the maze. When the rat was at the stem of the T-maze, the firing activity of several of these neurons also varied significantly as a function of the direction it would turn at the decision point, as detected by ANOVA. Second, in the decoding stage, we developed a state-space model for the animal's movement along a T-maze and used point process filters to accurately reconstruct both the location of the animal and the probability of the next decision. The filter yielded exact full posterior densities that were highly nongaussian and often multimodal. Our computational framework provides a reliable approach for characterizing and extracting information from ensembles of neurons with spatially specific context or task-dependent firing activity.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3