Populations of Tightly Coupled Neurons: The RGC/LGN System

Author:

Sirovich Lawrence1

Affiliation:

1. Laboratory of Applied Mathematics, Mt. Sinai School of Medicine, New York, NY 10029, U.S.A.

Abstract

A mathematical model, of general character for the dynamic description of coupled neural oscillators is presented. The population approach that is employed applies equally to coupled cells as to populations of such coupled cells. The formulation includes stochasticity and preserves details of precisely firing neurons. Based on the generally accepted view of cortical wiring, this formulation is applied to the retinal ganglion cell (RGC)/lateral geniculate nucleus (LGN) relay cell system, of the early mammalian visual system. The smallness of quantal voltage jumps at the retinal level permits a Fokker-Planck approximation for the RGC contribution; however, the LGN description requires the use of finite jumps, which for fast synaptic dynamics appears as finite jumps in the membrane potential. Analyses of equilibrium spiking behavior for both the deterministic and stochastic cases are presented. Green's function methods form the basis for the asymptotic and exact results that are presented. This determines the spiking ratio (i.e., the number of RGC arrivals per LGN spike), which is the reciprocal of the transfer ratio, under wide circumstances. Criteria for spiking regimes, in terms of the relatively few parameters of the model, are presented. Under reasonable hypotheses, it is shown that the transfer ratio is ≤1/2, in the absence of input from other areas. Thus, the model suggests that the LGN/RGC system may be a relatively unsophisticated spike editor. In the absence of other input, the system is designed to fire an LGN spike only when two or more RGC spikes appear in a relatively short time. Transfer ratios that briefly exceed 1/2 (but are less than 1) have been recorded in the laboratory. Inclusion of brain stem input has been shown to provide a signal that elevates the transfer ratio (Ozaki & Kaplan, 2006). A model that includes this contribution is also presented.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3