Rescuing missing data in connectome-based predictive modeling

Author:

Liang Qinghao1,Jiang Rongtao2,Adkinson Brendan D.3,Rosenblatt Matthew1,Mehta Saloni2,Foster Maya L.1,Dong Siyuan4,You Chenyu4,Negahban Sahand5,Zhou Harrison H.5,Chang Joseph5,Scheinost Dustin12356

Affiliation:

1. Department of Biomedical Engineering, Yale University, New Haven, CT, United States

2. Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, United States

3. Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States

4. Department of Electrical Engineering, Yale University, New Haven, CT, United States

5. Department of Statistics & Data Science, Yale University, New Haven, CT, United States

6. Child Study Center, Yale School of Medicine, New Haven, CT, United States

Abstract

Abstract Recent evidence suggests brain-phenotype predictions may require very large sample sizes. However, as the sample size increases, missing data also increase. Conventional methods, like complete-case analysis, discard useful information and shrink the sample size. To address the missing data problem, we investigated rescuing these missing data through imputation. Imputation is substituting estimated values for missing data to be used in downstream analyses. We integrated imputation methods into the Connectome-based Predictive Modeling (CPM) framework. Utilizing four open-source datasets—the Human Connectome Project, the Philadelphia Neurodevelopmental Cohort, the UCLA Consortium for Neuropsychiatric Phenomics, and the Healthy Brain Network (HBN)—we validated and compared our framework with different imputation methods against complete-case analysis for both missing connectomes and missing phenotypic measures scenarios. Imputing connectomes exhibited superior prediction performance on real and simulated missing data compared to complete-case analysis. In addition, we found that imputation accuracy was a good indicator for choosing an imputation method for missing phenotypic measures but not informative for missing connectomes. In a real-world example predicting cognition using the HBN, we rescued 628 individuals through imputation, doubling the complete case sample size and increasing the variance explained by the predicted value by 45%. In conclusion, our study is a benchmark for state-of-the-art imputation techniques when dealing with missing connectome and phenotypic data in predictive modeling scenarios. Our results suggest that improving prediction performance can be achieved by strategically addressing missing data through effective imputation methods rather than resorting to the outright exclusion of participants. Our results suggest that rescuing data with imputation, instead of discarding participants with missing information, improves prediction performance.

Publisher

MIT Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3